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Summary

1. Animals of many species demonstrate movement behaviour in which decisions are based on a variety of infor-

mation. Effects of resources have been studied widely, often under the assumption that the environment is con-

stant over the course of the study. Much less understood is the role of dynamic information about continuously

changing resource availability and past experiences. Such information can be acquired during movement bouts

and used for future decisions viamemory.

2. We present a new class of animal movement models, which incorporates a dynamic interplay of movement

and information gain processes. Information is contained in a dynamic cognitive map. As an example, we con-

sider time since last visit to locations and how this interacts with environmental information to shape movement

patterns. Our models can be fitted to empirical movement trajectories and are therefore amenable to statistical

inference (parameter estimation andmodel selection).

3. We tested the functionality of our method using simulated data. Parameter estimates were in accordance with

true values used in the simulations, and model selection via Bayesian information criterion (BIC) was able to

identify true underlying mechanisms of simulated trajectories. Thus, if time since last visit to locations influences

movement decisions, ourmethod is able to detect thismechanism.

4. The use of dynamic information such as the one demonstrated in our example models likely requires cognitive

abilities such as spatial memory. Therefore, our method can be used to reveal evidence of spatial memory in

empirical movement data. Understanding the components of individual movement decisions and their interac-

tions ultimately helps us to predict how population distribution patterns respond to environmental changes, such

as landscape fragmentation and changing climate.

Key-words: animal movement, behaviour, cognitive map, information, mechanistic model, mem-

ory, resource selection, step selection function

Introduction

Animal movement serves important needs such as food acqui-

sition, escape from predators and travel to reproduction sites.

Consequently, many species have evolved capacities to move

efficiently and purposefully by considering varying sources of

information for their movement decisions (Janson & Byrne

2007; Sulikowski & Burke 2011). Explaining the mechanisms

that underly such informed movement behaviour will allow us

to better understand animal space-use patterns and their

responses to environmental changes (Dalziel, Morales & Fryx-

ell 2008; Nathan et al. 2008; Sutherland et al. 2013).

Most animals live in heterogenous environments, and the

link between movement and environment has received much

attention. Using classical resource-selection analyses (Manly

et al. 2002), a wide range of studies have demonstrated that

animals selectively use the biotic and abiotic features that are

available to them (Fortin et al. 2005; Gillies, Beyer & St Clair

2011; Squires et al. 2013). Analyses of movement characteris-

tics have shown that animals express different movement

behaviours, for example encampment or travel, in different

habitats (Morales et al. 2004; Forester et al. 2007).

Most mechanistic models have concentrated on incorporat-

ing relationships between environmental factors and move-

ment behaviour within a static environment (but see Avgar,

Deardon & Fryxell 2013); however, observations show that

animals also take into account dynamically changing informa-

tion and respond with their movements to temporal availabil-

ity or unavailability of resources (Martin-Ordas et al. 2009).

For instance, fruit-eating primates express goal-oriented travel

towards those trees in their home range that carry ripe fruit

(Asensio et al. 2011), and it has been suggested that monkeys

use their daily travels tomonitor fruiting histories of trees (Jan-

son&Byrne 2007; Janmaat, Ban&Boesch 2013). On the other

hand, many resources, once depleted, need some time before

they become available again, providing reason for animals to

avoid depleted food patches (Davies & Houston 1981; Owen-

Smith, Fryxell & Merrill 2010; Bar-Shai, Keasar & Shmida

2011). Avoidance behaviour may be a response not only to

depletion of resources, such as plant biomass or prey, but also

to behavioural depression. Behavioural depression refers to a*Correspondence author. E-mail: ulrike.schlaegel@gmail.com
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reduction in prey availability that is caused by behavioural

changes of the prey in response to predation (Charnov, Orians

& Hyatt 1976). For example, prey may show greater alertness

or seek shelter. This reduces capture rates, to which predators

may respond in turn by changing their hunting areas (Jedrze-

jewski et al. 2001; Amano & Katayama 2009). Temporal con-

siderations also become important for movement decisions if

territorial defence mechanisms require animals to visit certain

locations regularly, for example to scent-mark territory bound-

aries (Moorcroft & Barnett 2008; Giuggioli, Potts & Harris

2011).

As the above examples highlight, spatio-temporal informa-

tion drives movement decisions and at the same time move-

ment allows animals to update this information. Experimental

findings additionally support that animals make decisions

based on information that they have obtained through previ-

ous experiences. Memory of information about the ‘what,

where andwhen’ of events, obtained through subjective experi-

ence, is termed ‘www-memory’ (Martin-Ordas et al. 2009) or

‘episodic-like memory’ (Griffiths, Dickinson & Clayton 1999).

It is possible that animals acquire information about current

environmental conditions through perceptual cues, even over

large distances (Tsoar et al. 2011), and that information about

the recent travel history is stored in externalized ‘memory’,

such as pheromone trails or slime (Deneubourg et al. 1989;

Reid et al. 2012). However, it is likely that many animals draw

upon internal memory, especially for behaviours that require

information about temporal distances (‘how long ago?’) (Grif-

fiths, Dickinson & Clayton 1999; Martin-Ordas et al. 2009;

Janmaat, Ban&Boesch 2013). During recent years,movement

models have started to incorporate influences of memorized

information on movement decisions (for a review, see Fagan

et al. 2013). Most of these are simulation models that are used

for theoretical considerations only (but see Avgar, Deardon &

Fryxell 2013); however, to test our understanding of the feed-

backs between movement and information acquisition, we

must also interface memory-based models with data (Smouse

et al. 2010).

Here, we present a new model for animal movement that is

amenable to likelihood-based inference, and inwhichwemech-

anistically incorporate the interplay of movement decisions,

environmental information and dynamically changing tempo-

ral information. Our model is similar in its form to recent spa-

tially explicit resource-selection models (e.g. Rhodes et al.

2005; Forester, Im&Rathouz 2009), in whichmovement steps

are assigned probabilities based on general movement tenden-

cies and resource preferences. In previous models, resource

information enters as a static covariate, providing knowledge

about features of the landscape, such as land cover type or

topographical features. In our model, we add dynamic infor-

mation obtained through experiences made during movement.

To realize the interplay of movement and information acquisi-

tion in our model, we draw on the concept of a cognitive map

(Tolman 1948; Asensio et al. 2011). We use this concept here

as a helpful mathematical construct that provides a map-like

representation of the animal’s environment containing all rele-

vant information. For an example of a dynamic information

gain process, we introduce information about the time since

last visit to locations. Time since last visit is useful information

that can play a role, for example, in the process of patrolling in

canids or food acquisition across species if food availability

varies (Davies & Houston 1981). With the inclusion of this

information acquisition process, we present a practical model

that incorporates both dynamic information and spatial

memory.

We place our model into a model selection framework that

allows us to identify which types of information most likely

shape the movement decision process. We first outline the gen-

eral formulation of our model and how memory effects can be

integrated. Subsequently, we present the details of several can-

didate models that correspond to different underlying mecha-

nisms of animal movement behaviour. Next, we show how the

models can be fitted to empirical movement trajectories to per-

form statistical inference. Finally, using simulated data, we test

the functionality of our framework and assess whether our

method can correctly detect effects of static resource informa-

tion and dynamically changing temporal information and

whether we can estimatemodel parameters reliably.

Materials andmethods

For several decades, the basis of many animal movement models have

been randomwalks. In a classical randomwalk, movement is described

as a series of discrete steps that have independent and identical proba-

bility distributions. This has been extended to include correlations

between steps, biases towards specific locations, and step probabilities

that depend on the behavioural state of the individual (Morales et al.

2004; Breed et al. 2012; McClintock et al. 2012; Langrock et al. 2013).

Random walks and their extensions have been used both to analyse

movement behaviour at an individual level (Lagrangian approach; e.g.

Smouse et al. 2010) and to derive partial differential equation models

that describe spatio-temporal patterns at a population level or expected

space use of individuals (Eulerian approach; e.g. Codling, Plank & Be-

nhamou 2008).

We are interested in understanding decision processes that underly

movement behaviour on the scale of individuals.We drawupon amod-

elling framework that bridges the gap between statistical resource-selec-

tion analysis and spatially explicit movement models (Rhodes et al.

2005; Moorcroft & Barnett 2008; Forester, Im & Rathouz 2009). The

framework builds on a random walk and defines movement via step

probabilities, which have two components. A resource-independent

movement kernel assigns probabilities to steps based on the animal’s

general movement tendencies. Given this, a weighting function evalu-

ates the attractiveness of steps according to resource availability and

resource preferences. We extend this framework by generalizing the

weighting function. In our generalization, the weighting function does

not only describe the influence of resources but allows for the inclusion

of any information relevant to the animal. Information can pertain to

landscape features and resources, as in previous models, but also to

memories of past events and timing aspects, which cannot be obtained

externally but only through the movement process and the animal’s

behaviour itself. We assume that information at a given time is either

obtained through direct perception or retrieved from the animal’s cog-

nitive map (i.e. memory), which itself is updated through experience.

In our model, the cognitive map is a function that assigns values to

locations according to their information content at a given time. Thus,

it serves as amathematical tool without the claim that it truly represents
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the underlying cognitive mechanism.With the framework of the cogni-

tive map, we provide a general method for including an explicit infor-

mation acquisition process. The cognitive map itself can take many

forms, depending on the species and behaviour of interest. In our candi-

date models, we demonstrate examples of types of information the cog-

nitivemapmay contain.

THE MODELL ING FRAMEWORK

We consider movement paths of individual animals, and we assume

that an individual’s trajectory consists of a series of locations (x1,. . .,xN)

at regular times T = {1,. . .,N}. Each location has an Easting and a

Northing in two-dimensional space, which is discretized into a regular

grid of square cells. The resolution of the spatial discretization depends

on the available environmental data and should be fine enough com-

pared to the animal’s movement such that steps generally range over

multiple cells.

We model movement as a stochastic process, where the probability

of making a step to location xt depends on the location at time t�1

and, if movement is persistent, on the previous step from xt�2 to xt�1.

We define this step probability as

pðxtjxt�1;xt�2;hÞ ¼ kðxt;xt�1;xt�2;h1Þwtðxt;h2ÞP
y2X kðy;xt�1;xt�2;h1Þwtðy;h2Þ ; eqn 1

where k is an information-independentmovement kernel,wt is an infor-

mation-based weighting function, and h = (h1,h2) is a collection of

model parameters. The sum in the denominator ensures that p is an

appropriately normalized probability mass function over space. The

spatial domainΩ is the area within which the animal can choose to tra-

vel during the time relevant to the study.

Using the conceptual framework of Nathan et al. (2008), we can

interpret the kernel k as describing the animal’s motion capacity andwt

as formulating the influence of external factors, towhichwe addmemo-

rized information. Both k and wt can be affected by the animal’s inter-

nal goal. For instance, if a herbivore is foraging, it is likely that it moves

slowly, changes its movement direction frequently and generally stays

in an environment with suitable foraging material. It may additionally

prefer to forage in an area with low predation risk. Such behaviour

could be implemented by a kernel that assigns higher probabilities to

locations in the animal’s close vicinity with the same values in all direc-

tions and a weighting function that has highest values in preferred for-

aging habitat. The weighting function could also include information

about previously experienced presence of predators (Latombe, Fortin

&Parrott 2014).

In general, the movement kernel k can be very simple, for exam-

ple constant within the animal’s maximum movement radius

(Rhodes et al. 2005); however, we can also use a more complex ker-

nel that accounts for persistence in movement direction or biases

towards specific locations (Moorcroft & Lewis 2006). Directions can

be measured by either turning angles (the angles between successive

steps) or bearings (the angles of steps with respect to a fixed direc-

tion, e.g. North).

We model the weighting function wt as a resource-selection function

(Manly et al. 2002; Lele & Keim 2006). There are several forms avail-

able for resource-selection functions, and here we present the logistic

form,

wtðx; a; b; cÞ ¼ 1þ exp
��a� I tðxÞ � b� fðI tðxÞ; cÞ

�� ��1
; eqn 2

where � denotes the dot product of two vectors. The vector I tðxÞ 2 Rn

is the cognitivemap content at location x at time t containing the values

of all information variables of location x at time t, and b 2 Rn is a

parameter vector describing the animal’s preference for a location of

type I tðxÞ. The intercept a 2 R determines the baseline weight of a

location when all information variables are zero. The function f and

parameter vector c account for possible interactions between different

information variables. Locations with preferred features have high

weights, thereby increasing the chance that an animal will visit those.

The logistic form of the weighting function restricts weights to be

between zero and one, and therefore the weighting function can in fact

be viewed as a resource-selection probability function (Lele & Keim

2006).

Because of the dependence structure of the step probabilities in

eqn 1, they are only valid for times t ≥ 3. Here, we chose to define an

initial probability for the first two locations, p(x1, x2|h) =
p(x2|x1,h)p(x1|h). A simple option is to assume that every location in

the spatial domain has the same probability to be the first location,

pðx1jhÞ ¼ 1
jXj, and to let

pðx2jx1; hÞ ¼
~kðx2;x1; j;kÞwtðx2;a; b; cÞP
y2X ~kðy; x1;j;kÞwtðy;a; b; cÞ

; eqn 3

where ~k is possibly a simplified form of k in case that k describes persis-

tentmovement.

CANDIDATE MODELS

We consider four different models that represent biological hypotheses

about the types of information that an individual may consider for

making movement decisions. In the simplest case, the null model, we

assume that the animal considers no specific information. In the

resource model, an individual considers static information about the

environment, where ‘static’ means that the information content

remains constant over the time span of the analysis. Information can be

given about any resources pertaining to the animal, for example any

variables as they are typical in resource-selection analyses. To include

dynamically changing information, we allow information, and thereby

the weighting function, to change through time. If information was

only given externally, this would constitute a dynamic version of the

resource model. However, our aim is to model a dynamic interplay of

movement decisions and information content. In the memory model,

we therefore introduce time since last visit as new type of information.

To account for the possibility that both resources and the dynamic vari-

able time since last visit influence movement decisions simultaneously,

we consider a combinationmodel as themost complexmodel.

We implement the different models by varying the information vari-

able I t in the weighting function (eqn 2) while using the same move-

ment kernel for all models. For example, trajectories demonstrating the

different movement patterns resulting from the four candidate models,

see Fig. 1 and animations inAppendix S3.

Null model

In the null model, we assume that the information content of all loca-

tions is zero. Therefore, the weighting function is homogeneous across

the landscape and constant over time, wt(x) = 1 for all x 2 Ω, t 2 T.

This means that the animalmoves only according to the kernel k.

Resourcemodel

In the resource model, information is static and includes all resource

variables of interest, I tðxÞ ¼ IðxÞ ¼ ðr1ðxÞ; ; rnðxÞÞ for every loca-

tion x 2 Ω. It is straightforward to extend this to dynamic resource
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information to include, for example, seasonal changes in the landscape

or disturbance events.

Memorymodel

In the memory model, we assume that while the animal moves

through the environment, it monitors the time since last visit from

locations and uses this information for movement decisions. For

instance, recently visited areas may be avoided for a period of time,

whereas locations with long absence may be attractive. In our model,

we include this feature by defining the cognitive map as mt : X ! N,

which at any time assigns values to all locations in the spatial

domain based on the map values at the previous time and the most

recent movement step. If the animal moves from location xt�1 to xt

between times t�1 and t, we define for any location y in the spatial

domain

mtðyÞ

¼ 0; if dðy; zÞ� d for any z 2 pathðxt�1 ! xtÞ
mt�1ðyÞ þ 1; otherwise.

�

eqn 4

Because of our spatial discretization, we use d(y,z) =

|yE�zE| + |yN�zN| as the distance between two locations y, z with Easting

and Northing y = (yE, yN) and z = (zE, zN), such that all locations within

a distance d of a fixed location z form a diamond-shaped area around z.

We assume that path(xt�1 ? xt) is the straight line between xt�1 and xt.

Via eqn 4, an individual counts the number of steps it remains absent

from locations, and therefore, mt(x) is the time since last visit to location
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Fig. 1. Example trajectories from the four candidate models, 100 steps long, with starting locationmarked by a green box and final locationmarked

by a blue triangle. All trajectories are plotted on top of an example resource-selection functionwðx;a; bÞ ¼ 1þ exp
��a� b1 r1ðxÞ � b2 r2ðxÞ

�� ��1

generated from two resources r1 and r2. The null model does not consider resource information, and therefore, the null trajectory visits locations irre-

spective of the resource-selection function. The memory model does not consider resource information either, however, the animal avoids recently

visited locations and is attracted to locations with long time since last visit. Therefore, the memory trajectory efficiently explores the spatial domain

in a patrolling fashion. In contrast, the resource trajectorymainly remains in areas where the resource selection function has high values. The combi-

nation trajectory shows a mixture of behaviours from the resource and the memory model. The trajectories were generated using the first landscape

pair andmain parameter set from the simulation study; compare Fig. 3 andAppendix S1.
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x at time t. A location is considered visited when the animal comes within

a distance d > 0. Because mt is obtained recursively, we have to define

appropriate starting values. Here, we use movement data prior to the tra-

jectory (x1,. . .,xN) for initialization. If a location x was visited during the

initialization phase, we calculate the time between the last visit to this

location and the beginning of our actual trajectory and thus reconstruct

time since last visit at time t = 1, m1(x). For all locations not visited dur-

ing initialization, we set time since last visit as the length of the initializa-

tion phase. The dynamic variable time since last visit is used in the

memory model to inform movement decisions via I tðxÞ ¼ mt�1ðxÞ;
compare also Fig. 2. Once xt is chosen according to the probability mass

function in eqn 1, mt is updated via eqn 4. Here, we track time since last

visit for the entire spatial domain Ω. If the selection coefficient with

respect to mt(x) is positive, this leads to any location eventually becoming

highly attractive after long enough absence. If this behaviour is not

desired, one may adjust the definition of the cognitive map or weighting

function appropriately. For example, if prior information about an ani-

mal’s behaviour is given, it is possible to track time since last visit only

for certain locations of specific interest.

Combinationmodel

In the combinationmodel, we allow information types from the resource

and memory model to influence movement simultaneously by letting

the information vector be I tðxÞ ¼ ðr1ðxÞ; . . .; rnðxÞ;mt�1ðxÞÞ. In par-

ticular, this models allows for interactive effects of time since last visit

and resource variables, for example, by incorporating multiplicative

terms of the form cr(x)mt�1(x) into the interaction term fðI tðxÞ; cÞ in
the weighting function (eqn 2). This is important in situations where

return times to locations matter depending on the resources at the loca-

tion, for example average return times to preferred foraging areas may

differ from those to locations used as shelter.

Information-independent kernel

We define the movement kernel k based on a step length distribution

with density S and a distribution for movement directions with density

Φ. For step length, we use a Weibull distribution with scale and shape

parameter j > 0 and k > 0, respectively, because it has a flexible form

and generally shows a good fit with empirical data (Morales et al.

2004). Thus,

Sðkxt � xt�1k; j;kÞ

¼ j
k

kxt � xt�1k
k

� �j�1

exp � kxt � xt�1k
k

� �j� �
:

eqn 5

To measure movement directions, we use bearings, and we denote

the bearing of the step from xt�1 to xt by φ(xt�1,xt) 2 [�p,p). We

include directional persistence by choosing a wrapped Cauchy

distribution for bearings with scale parameter q > 0 and mode at the

previous step’s bearing φ(xt�2,xt�1),

U
�
uðxt�1;xtÞ;uðxt�2;xt�1Þ;q

�
¼ 1

2p
sinh q

cosh q� cosðuðxt�1; xtÞ � uðxt�2; xt�1ÞÞ :
eqn 6

The wrapped Cauchy distribution is convenient for implementa-

tion, and it has been used commonly to model movement direc-

tions (Morales et al. 2004; Codling, Plank & Benhamou 2008, note

that eqn 6 is equivalent to their formula with parameter transfor-

mation r = exp (�q)). One could use alternative distributions, such

as the von Mises distribution or wrapped normal distribution

(Codling, Plank & Benhamou 2008). Assuming that the choices for

step length and movement direction are independent, the kernel

becomes the product of S and Φ, describing a correlated random

walk,

kðxt;xt�1;xt�2;j;k; qÞ
¼ Sðkxt � xt�1k; j;kÞU

�
uðxt�1;xtÞ;uðxt�2; xt�1Þ; q

�
:

eqn 7

Because the kernel formulates persistent movement and takes into

account the bearing of the previous step, we define a simplified kernel

for t = 2 as

~kðx2;x1;j;kÞ

¼ 1

2p
j
k

kxt �xt�1k
k

� �j�1

exp � kxt �xt�1k
k

� �j� �
:

eqn 8

This means that we assume a uniform distribution for the first bearing.

Note that this definition of the movement kernel from step length

and bearing distributions does notmean that we obtain the kernel from

empirical step lengths and bearings in advance and then use this

observed kernel to estimate the weighting function parameters in a

case–control study, as has been previously suggested for resource-selec-

tion analysis (Fortin et al. 2005; Forester, Im & Rathouz 2009).

Because movement and resource selection are not independent pro-

cesses, a decoupled treatment of the processes can lead to biased esti-

mates. We circumvent this problem, and we use the formulation in

terms of step length and bearing only to define the functional form of

the information-independent movement kernel. During model fitting

(see next section), we estimate all model parameters simultaneously

from the data.

STATIST ICAL INFERENCE

If informationI t is known, the likelihood function for the collection of

parameters h = (j,k,q,a,b,c) for the generalmodel is

LðhÞ ¼ pðx1; hÞpðx2jx1hÞ �
YN
t¼3

pðxtjxt�1; xt�2; hÞ: eqn 9

In the memory and combinationmodel, I includes the variable time

since last visit m = (mt, t 2 T), which represents internal information

of the animal that in general cannot be observed. However, because of

the way we define and initialize m, we are able to iteratively calculate
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Fig. 2. In the memory model, the weight wt(x) of a location x depends

on time since last visit mt�1(x) to that location. Locations that have

been visited recently have low weights and are thus avoided. A weight

of 0�5 is attainedwhenmt�1 ¼ � a
b (dotted vertical line).
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the time series (m1,. . .,mN) based on the movement trajectory. There-

fore, given the data (x1,. . .,xN), time since last visit becomes a known

covariate, and the likelihood function in eqn 9 is valid for all models.

To obtain parameter estimates and their confidence intervals for all

models, we use data cloning (Lele,Dennis&Lutscher 2007).Data clon-

ing uses Markov Chain Monte Carlo (MCMC) methods, which are

usually employed in Bayesian statistical inference. However, data clon-

ing provides approximations to maximum-likelihood estimates

(MLE), together with Wald-type confidence intervals, thus facilitating

frequentist inference; seeAppendix S2.

We use the approximate MLEs for the model parameters in

eqn 9 to calculate the corresponding approximate maximum-likeli-

hood values. From these, we obtain the Bayesian information crite-

rion (BIC) for each of the four models (Burnham & Anderson

2002). Alternatively, we could have used Akaike information crite-

rion (AIC); however for large data sets, AIC tends to favour overly

complex models (Link & Barker 2006). For each trajectory, we

select the model with smallest BIC as the one that explains the deci-

sion mechanism of the trajectory best. We use the BIC of this best

model as a reference to calculate BIC differences for all alternative

models (DBIC = BICalternative�BICbest).

A common problem in statistical inference are missed observa-

tions. Missed locations in an otherwise regular movement trajectory

occur, for instance when GPS devices fail to acquire satellite signal

due to closed canopy or otherwise limited available sky. In an

autocorrelated trajectory, with each missed location we additionally

lose associated information. Calculations of step lengths and bear-

ings require two successive locations. In models with persistent

movement, we require not only the current but also the previous

bearing for step probabilities. Therefore, in a correlated random

walk, one missed location can effectively lead to a gap of two full

steps. In MCMC-based data cloning, we can treat missed locations

explicitly as unknown variables and account for this in the likeli-

hood function,

LðhÞ ¼
Z

pðxavail; xmissÞdxmiss: eqn 10

This allows to preserve the entire dependency structure of the trajectory

and avoids the need to discard any information. For more information

on this, see Appendix S1.

SIMULATION STUDY

To verify the functionality of our method, we applied the modelling

framework and statistical inference method to simulated data. Because

eqn 1 defines probability mass functions for movement steps, we can

sample from them to iteratively generate individualmovement trajecto-

ries according to the four candidatemodels. These data have the advan-

tage that we know both a trajectory’s underlying mechanism and the

parameter values that were used to generate the trajectory. By applying

our inference procedure to these data, we investigated whether we were

able to identify the true underlying mechanism of a trajectory and

whether wewere able to correctly estimate parameter values.

Simulation of landscapes

Because movement decisions in the resource and combination model

are based on environmental information, we first simulated landscapes

of covariate values. We consider two resources (r1,r2), one having a

continuous range of values, for example a biomass measure or eleva-

tion, and the other representing presence or absence of a feature, for

example a preferred food source, via a binary variable that takes either

value 1 or 0. To include biological realism, we accounted for spatial

correlations in the covariate values. We simulated five pairs of land-

scapes with varying spatial structures. For more information, see

Appendix S1.

Simulation ofmovement trajectories

We generated movement trajectories using the four candidate models

presented above. When we used the null model, we called the resultant

trajectory a null trajectory, and we named trajectories analogously for

the othermodels.

On each of the five landscape pairs, we simulated a null, resource,

memory and combination trajectory, using the samemovement param-

eter values on all landscapes and across all four models, as applicable

(Fig. 3). The kernel parameters j, k, q appear in all models. The

resource model has additional parameters ares, b1, b2, which are the

intercept and the selection parameters with respect to the two resources

(r1,r2) of the weighting function (eqn 2). In this model, we assumed

there is no interaction between the two resources. The memory model

instead has additional parameters amen and bmem, which describe the

animal’s preferenceswith respect to time since last visitm. In the combi-

nation model, the weighting function includes all effects, such that it

has parameters acom = ares+amem, b1, b2 and bmem. In this model, we

further allowed for interactions between resources and time since last

visit by defining the interaction term in the weighting function as

f
�ðr1; r2;mtÞ; c1; c2

� ¼ c1r1mt þ c2r2mt, where c1 and c2 are the inter-
action parameters. We chose the main set of parameter values to repre-

sent realistic movement behaviour. To account for scenarios for which

parameter values were potentially more difficult to estimate from data,

for example small values of selection parameters, we generated two

supplemental data sets, comprising two additional sets of 20 trajectories

each generated from alternative sets of parameters; seeAppendix S2.

For all trajectories, we simulated 2600 time steps, of which we dis-

carded the first 1400 steps as initialization. This was particularly

important for the memory model, in which we started with a cogni-

tive map having value 0 everywhere. We used the last 400 steps from

the initialization phase to calculate m1. Each final trajectory consisted

of 1200 time steps, which we considered a length commonly available

(e.g. 1200 time steps could represent 50 days of 1-h data or 100 days

of 2-h data).

For an example of how to handle missed observations, we simulated

a combination trajectory with 90% fix rate by removing locations from

a trajectory, 5% as single locations and 5%as two successive locations.

We chose a trajectory from themain data set, which allowed us to com-

pare results for completely and incompletely observed trajectory; see

Appendix S2.

Analysis of simulated data

To every simulated trajectory, we fitted all four candidatemodels (Fig.

3) using data cloning. For details about the data cloning and MCMC

procedures, such as number of clones and iterations used, seeAppendix

S1. There were two basic types of model fits that we distinguished in

our analyses. Amodel could be fitted to amatching trajectory, that is a

trajectory that had been simulated using the same model’s mechanism

(e.g. a resourcemodel fitted to a resource trajectory). Or, amodel could

be fitted to a non-matching trajectory (e.g. a resource model fitted to a

null, memory or combination trajectory). Each model fit generated

estimates of the model parameters, together with Wald-type confi-

dence intervals. Here, we used 95% confidence intervals. Using the
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approximatemaximum-likelihoodparameter estimates fromdata clon-

ing, we estimated the maximum value of the model likelihood, and

BIC, for eachmodel fit.

For all parameter estimates, we examined whether their potential

scale reduction factors R̂ were close to 1 (Gelman & Rubin 1992).

For an MCMC fit, in which parallel Markov chains are used to gen-

erate the posterior distribution of a parameter, the potential scale

reduction factor of a parameter indicates whether the chains have

mixed well and converged. If this is not the case, the estimate that

results from such an MCMC is not meaningful. We considered a

potential scale reduction factor 0 � 9� R̂� 1 to be sufficiently close

to 1 (Gelman & Rubin 1992), and we excluded all parameter esti-

mates that did not meet this condition from our analysis. Whenever

such a non-convergent or non-mixing parameter occurred within a

model fit, the resultant likelihood and BIC values of the fit were

possibly inaccurate. Therefore, if a model fit included one or more

parameters with R̂\0 � 9 or R̂[ 1 � 1, we excluded the BIC value

from our model selection analysis.

For each trajectory, we compared whether the best model according

to model selection via BIC coincided with the true underlying model of

the trajectory. Under the assumption that our framework is functional,

we expected the model that matched a trajectory’s underlying

mechanism to have minimal BIC. Because both the resource model

and the memory model are nested within the combination model, we

further expected the combinationmodel, when applied to a resource or

memory trajectory, to perform better than the simple alternative (e.g. a

memorymodel applied to a resource trajectory).

For matching model fits, we compared true parameter values that

were used to generate a trajectory to the parameter estimates obtained

from applying the matching model, and we examined whether 95%

null model combination modelresource model memory model
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confidence intervals of parameters included the true values. This should

be achieved 95% of the time if parameters are identifiable and our sta-

tistical methodology is functional.

In resource-selection analysis, it is usual to use hypothesis testing to

determine whether a covariate has an effect or not. We performed an

equivalent analysis and examined confidence intervals of the selection

parameters b1, b2, bmem, c1, c2 in thosemodel fits, in which the combina-

tion model was fitted to a trajectory. The combination model includes

all possible covariates, but not all covariates were simulated to have an

effect in all trajectories, for example a resource trajectory includes

effects of the resource variables but not time since last visit. Confidence

intervals that corresponded to true underlying effects should exclude

zero and vice versa. However, by definition, an a-level hypothesis test
results in a Type I error of a, which we expected to observe approxi-

mately in this analysis. Additionally, we expected a Type II error to

occur, where a confidence interval included zero although the corre-

sponding covariate had an effect. We compared the outcome of this

methodwith the results frommodel selection via BIC.

We performed all simulations of movement trajectories and statisti-

cal analyses in R (R Core team, 2013), using additionally package

‘dclone’ (Solymos 2010). To generate MCMC samples, we used JAGS

via theR package ‘rjags’ (Plummer 2013).

RESULTS

Here, we present results for data generatedwith themain set of parame-

ters h1 (Fig. 3). Results for supplemental data generated by additional

sets of parameters can be found inAppendix S2.

Of all 80 model fits (four models fitted to 20 trajectories each), 80%

had potential scale reduction factor 0 � 9� R̂� 1 � 1 for all model

parameters. In the remaining model fits, at least one parameter had

R̂[ 1 � 1 (Fig. 4). Convergence or mixing problems never occurred

when the null model was fitted to a trajectory, even if the trajectory had

a more complex underlying mechanism. Large R̂ values only occurred

if the fitted model contained parameters that were inapplicable to the

model that was used to generate the trajectory. This was the case when

any of the more complex models was fitted to a null trajectory, when

the combination model was fitted to a resource or memory trajectory,

or when the memory model was fitted to a resource trajectory and vice

versa. In these model fits, the non-convergent parameters were mainly

those that did not correspond to true underlying covariate effects.

However, when in a model fit problems occurred for multiple parame-

ters, occasionally even applicable parameters failed to converge. In

matching model fits, Markov chains always mixed well and converged.

Formore details on convergence, see Appendix S2.

Our model selection framework was able to correctly identify the

true underlying model for all trajectories (Fig. 4). When a trajectory

had underlying resource or memory mechanism, the next best model

was always the combinationmodel withDBICbeing amagnitude smal-

ler than for the alternatives. This pattern was only disturbed if the com-

bination model experienced convergence problems and was therefore

excluded from further analysis.

Parameter estimates in matching model fits agreed well with true

underlying parameter values. Parameter estimates generally were both

close to and balanced around their true values (Fig. 5). The 95% confi-

dence intervals (n = 115) included the true parameter value 91% of the

time. If we also considered results from the supplemental data, 94% of

all confidence intervals (n = 345) included the true value.

Our hypothesis test as to whether covariates had an effect agreed

with our expectations. The combinationmodel fitted to the 20 trajecto-

ries lead to 73 estimates of selection parameters, of which 39 corre-

sponded to true underlying effects. Analysing their confidence

intervals, we obtained a false-positive rate (Type I error rate) of 0�09
and a false-negative rate of zero, that is Type II errors did not occur.

However, if we also considered the supplemental data and thereby

increased the amount of resultant parameter estimates with confidence

intervals to a total of 217, we obtained a Type I error rate of 0�04 and
again a Type II error rate of 0�09.

Discussion

In recent years, the link between animal movement and spatial

memory has received increasing attention (Smouse et al. 2010;

Fagan et al. 2013). Studies of animal behaviour and cognition

have given useful insights into animals’ capacities to remember

past experiences and use spatial memory. Most results have

been obtained through experiments in confined and synthetic

settings. However, to better understand how important ecolog-

ical processes such as movement and dispersal are shaped by

cognitive processes and memory, we also need to look at ani-

mals in their natural environments (Tsoar et al. 2011). Under-

standing the components of individual movement decisions

and their interactions ultimately will help us to predict how

population distribution patterns respond to environmental

changes, such as landscape fragmentation and changing

climate.

We have presented a modelling framework that can be used

to detect the influence of memorized information on move-
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nation (C)model. For each trajectory, we calculated BIC values for the four fittedmodels, and the figure shows differences in BICwith respect to the

minimal BIC value, that is themodel withminimal BIC hasDBIC = 0.We excludedmodel fits with non-convergentMCMC. Triangles indicate tra-

jectories for whichwe calculated estimability diagnostics; Appendix S2.
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ment decisions. We recognize that in many situations, it is

difficult to confirm that animals draw upon memorized infor-

mation instead of momentarily perceived information; how-

ever, there is evidence that animals use information that they

have obtained during past experiences (Martin-Ordas et al.

2009; Janmaat, Ban & Boesch 2013). As an example of such

information, we use time since last visit to locations. In our

model, time since last visit is continuously updated during the

movement process and at the same time influences movement

decisions. We formulate our models in a way that makes them

amenable to likelihood-based statistical inference. This allows

us to fit our models to data to test whether the timing of events

plays a role for movement decisions. Fitting the full model

(eqn 1), encompassing both general movement tendencies and

selective behaviour, to data via the likelihood function (eqn 9)

enables simultaneous estimation of parameters of both the

general movement kernel and weighting function. This distin-

guishes our method from step selection approaches that use an

empirical movement kernel to estimate resource-selection

parameters in a case–control framework (Fortin et al. 2005;

Forester, Im&Rathouz 2009).

In our definition of the weighting function (eqn 1), we fol-

lowed the classical formulation of resource-selection functions

and evaluated a movement step based on the information at

the endpoint of the step. In thememorymodel, this means that

an animal may cross recently visited locations on its path

although these have low weights. Depending on the behaviour

of the study species, it may be appropriate to change this so

that cognitive map values along the entire path are considered,

thus following the idea of step selection functions (Fortin et al.

2005; Potts et al. 2014). In our framework, it is straightforward

to define the weighting function as a function not only of xt but

also xt�1 and to include any information related to the step

from xt�1 to xt. Endpoints are observed locations and there-

fore have certainly be used. To include information about

entire steps, we must make an assumption about which loca-

tions were visited between observed locations. In the memory

model, we assume this is a straight line; however, one may use

more sophisticated methods similar to Brownian Bridges

(Horne et al. 2007).

We used simulated landscapes and movement data to verify

the functionality of our modelling framework and statistical

inference method. Adding the memory process to the model-

ling framework considerably increased model complexity and

the amount of data that had to be processed. We were there-

fore interested in whether we could correctly detect memory

effects in empirical movement patterns and whether parame-

ters that describe the memory process and its interactions with

other variables were possible to estimate reliably. To perform

inference, we used data cloning, which usesMCMC techniques

but facilitates frequentist inference. We used the software

package JAGS, which allowed us to define models in an easily

understandable language and provides a stable implementa-

tion of MCMC sampling. JAGS was able to adapt the sam-

pling process successfully so that parameters of very different

magnitude could be reliably estimated. However, this came at

the cost of long computation times (ranging 0�5–5 days per sin-
gle chain for different models) and high memory needs (rang-

ing 1–5 GB RAM). Alternatively, we could have used

conventional numerical maximization of the likelihood func-

tion, which in this case may have been faster but at the same

timemore limited. Because data cloning is based onMCMC, it

is amenable to extensions of our model to include partially

observed and hidden processes. We have demonstrated this

with our example on missed observations. Any Bayesian

method would provide this option and it may be a matter of

belief whether frequentist of Bayesian approaches are used.

However, data cloning additionally provides tools to detect

parameter estimability problems (Lele, Nadeem & Schmuland

2010), which was relevant in our analysis; compare Appendix

S2. At this stage, data cloning via JAGS was computationally

intense, and it may be worth to explore alternative options, for

example a ‘home-made’ MCMC sampler in a fast language

such as C/C++. Still, with quickly increasing computational

capacities and advances in statistical software, we believe that

ourmethod has a promising future.

Verification of our method was successful. In matching

model fits, almost all MCMC runs mixed well and converged.

Convergence and mixing problems occurred in non-matching

model fits and especially for parameters thatwere notmeaning-

ful to the trajectory (e.g. a resource-selection parameter for a

memory trajectory). For further application of ourmethod, we

have given recommendations how to proceed in cases on non-

convergent model fits (Appendix S2.). Model selection via BIC

successfully identified trajectories’ true underlying mecha-

nisms, and if parameters in a model fit were applicable to the

underlying trajectory, we were able to recover true parameter

values. Simulated movement trajectories were samples of
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stochastic processes, and therefore realized parameter values

were subjected to stochasticity. Thus, parameter estimates

could not be expected to exactly coincide with the true values.

Verifying the functionality of our method was particularly

important with respect to the newly introduced memory pro-

cess. We conclude that if time since last visit is a driver of

observed movement trajectories, our framework is able to

detect this.

When we compared results from model selection to out-

comes of hypothesis tests, we found that model selection was

better able to distinguish true underlyingmechanisms of trajec-

tories. By definition, hypothesis tests allow for a Type I error,

the size of which is influenced by the level of the test. However,

decreasing the Type I error simultaneously decreases the power

to correctly detect effects of covariates and increases the Type

II error. The model selection framework is not based on this

concept, and it proved to bemore accurate in our analysis.

We have built on the framework of spatially explicit

resource-selection models and added the influence of a

dynamic memory process onmovement decisions by introduc-

ing a dynamic cognitive map and linking it with the movement

and resource-selection process. The existence of cognitivemaps

in animals is debated, and there is especially controversy about

what form such maps may take, for example whether animals

use topological cognitive maps for landmark-based navigation

or whether animals can create and use geometric cognitive

maps that preserve angles and distances between locations

(Bennett 1996; Asensio et al. 2011; Collett, Chittka & Collett

2013). This debate also includes the question whether spatial

information in the brain is encoded with respect to the position

of the viewer, that is egocentrically, or independently of the

position of the viewer, that is allocentrically (Yeap 2014). In

our models, we do not focus on navigational mechanisms but

decision-making processes, and we use the cognitive map as a

useful mathematical tool tomodel spatial information. Investi-

gation of different navigational mechanisms within a model

selection framework similar to that presented here could be the

goal of future research. With our model formulation in terms

of a cognitive map, we have provided a general framework for

linking movement with information use and acquisition. We

emphasize that within this general formulation, a variety of

more specific formulations of cognitive maps can be realized,

tailored to the situations and behavioural processes of interest.

In our candidate models, we have used time since last visit to

locations as an example of a form of dynamic information that

is mediated by the cognitive map. We have demonstrated how

the time since last visit to a location can shape the movement

process, either on their own or in interaction with environmen-

tal variables. Such behaviours can, for instance, occur when

animals patrol their home ranges for defence purposes, when

predators counteract behavioural depression, or when animals

rely on resources that vary in their availability due to depletion.

However, our modelling framework and its elements are flexi-

ble and can be extended to include other forms of dynamic

information and experiences that animals collect during their

movement. For instance, while animals travel, theymay gather

information about seasonally available resources. Observa-

tions of primates show evidence that they remember fruiting

statuses of individual trees and use this information to predict

the fruiting status of those trees at later times (Janmaat, Ban &

Boesch 2013). Prey species can use their movement to collect

information about the distribution of predators. Such informa-

tion can enable prey to reduce costly antipredatory behaviours

and therefore outweigh attack risks connected to the informa-

tion collection. This has been suggested to explain movement

behaviour of caribou towards wolf paths (Latombe, Fortin &

Parrott 2014).

Although our models describe movement behaviour of indi-

vidual animals, the ideas we have presented can also apply to

other systems. A specific feature of our models is the interac-

tion between a movement process and an information, or

memory, process. A similar dynamic interplay can arise on a

larger scale when a species disperses and expands its range.

While moving into a new environment, the dispersing species

might alter the environment and its species composition, which

in turn could affect the dispersing species (Gilman et al. 2010).

Such processes could be analysed with the same mathematical

ideas and modelling tools as we have presented here. Thus, we

have presented a powerful modelling approach to identify spa-

tial memory and dynamic information as drivers of movement

decisions, and our framework and its elements promise a wide

range of applications withinmovement ecology.
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